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Abstract Halo-based Galaxy Group Finder (HGGF) is an effective algorithm that accomplishes the task of galaxy group 

finding which takes various properties of galaxies into consideration when assigning them into groups. However, current 

pure OpenMP implementation of the algorithm is limited by the resource of the underlying single compute node, 

especially its memory, when dealing with large-scale group finding problems. Therefore, it is essential to redesign the 

algorithm to port the code to multiple nodes in order to further reduce execution time in group finding procedure, and 

more importantly, to make it possible to solve large-size galaxy group finding problems. The major hurdle for such 

attempt is remote memory access due to semi-random galaxy access in the algorithm. To tackle such a problem, we 

proposed a parallel design of HGGF algorithm and a Unified Parallel C (UPC) implementation of it. With the help of 

our adjacent galaxy list design, we achieved about 2.25, 2.78 and 5.07 times speedup for the kernel part of the algorithm 

with 4, 8 and 16 nodes respectively, and for the whole program, 1.69, 1.90 and 2.63 times speedup were achieved. 

Meanwhile, the memory requirement on each node was also reduced significantly. Our experiments also show that 

programs with semi-random memory access behavior like HGGF may not readily benefit from large shared memory 

systems with NUMA architecture. Two-level parallel design that takes advantage of data locality on distributed memory 

clusters may be a better solution. 
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1. Introduction 

Owing to the rapid development of science and 

technology, the total amount of data produced in the field 

of astronomy has been increasing exponentially. Today's 

astronomers are heavily relying on various data collected 

from telescope or computer simulation (such as data from 

2-degree Field Galaxy Redshift Survey [1], Sloan Digital 

Sky Survey [2], the Q continuum simulation [3] and the 

Millennium simulations [4]). The capture and analysis of 

astronomical data have become an indispensable 

component of contemporary cosmology studies. Now we 

are facing a great challenge regarding our ability to 

process and analyze the obtained information, and this 

has become a bottleneck of today's astronomy 

exploration [6]. 

One of the most compelling topics in astronomy 

research is the formation and structure of galaxy groups. 

A large number of studies have been focusing on this 

topic, such as the construction of galaxy group catalogue 

from 2dFGRS by V.R. Eke et al [5]. Halo-based galaxy 

group finder (HGGF) is a group finding algorithm 

proposed by Prof. Xiaohu Yang et al [7][8]. It groups 

galaxies together based on their properties and the dark 

matter halo that galaxies reside in. This algorithm has 

been applied to a wide range of astronomy data, such as 

2dFGRS and SDSS etc. This algorithm is based on the 

traditional Friends-of-Friends (FoF) group finder [9], and 

it has made several improvements in many aspects. 

Therefore, it is more accurate and can enable the 

sampling of a wider dynamic range of group mass [8]. 

However, as the size of the input galaxy data 

augments, the current implementation of the algorithm 

cannot satisfy our needs. Most importantly, the memory 

on a single node is limited, therefore huge workload 

cannot fit into the physical memory (for large-scale group 

finding problems, the memory consumption can range 
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from several hundred GB to several TB). This poses a 

threat to our knowledge discovery, thus new method must 

be proposed to tackle such a problem. 

Partitioned Global Address Space (PGAS) model 

has become increasingly popular in recent years as an 

alternative to MPI on distributed memory architectures. 

PGAS model possesses the programming convenience of 

shared memory and the flexible control of message 

passing. Common PGAS languages include Unified 

Parallel C (UPC), Co-Array Fortran (CAF), X-10 and 

Titanium etc. UPC is an extension of ISO C99 Standard 

with parallel programming support [10].  

In this paper, we introduce our parallel design and 

implementation of the HGGF algorithm. We decompose 

the problem space and let each UPC process take charge 

of a subspace, therefore processes can take advantage of 

data locality when calculating groups. Experiments have 

shown that with 4, 8 and 16 UPC processes, memory 

requirement on a single node are reduced by 67.5%, 76.2% 

and 85.3%, meanwhile 1.69, 1.90 and 2.63 times total 

speedup are achieved. 

The contributions of our work include: 

1. An effective two-level parallel design and 

implementation of HGGF algorithm which 

solves the single node memory limitation 

problem involved in large-scale galaxy group 

finding. The adjacent galaxy list design can 

eliminate expensive remote memory access 

and improve performance on multiple nodes. 

Such strategy may be applied to similar 

applications. 

2. A study of different data distribution methods 

(explicit and implicit) and bulk memory 

transfer optimization in UPC programs. Their 

impact on performance is examined and the 

result shows that although UPC provides a 

convenient programing interface for 

programmers, hand-tuning and optimization 

are necessary if optimal performance is desired.  

3. Tests and analysis on a SGI machine which 

indicate that programs sensitive to memory 

access like HGGF may not readily benefit from 

the computing power provided by such 

machines, therefore to parallelize such 

algorithms, users may need to either put extra 

effort to fully utilize such hardware or use two-

level algorithm design to exploit data locality 

on clusters or distributed memory systems. 

The rest of this paper is organized as follows. Next 

section introduces related studies. Section 3 introduces 

necessary background. Section 4 introduces the profiling 

result on a cluster and a SGI machine. Our design, 

implementation and optimization of the algorithm are 

described in section 5. Performance evaluation is 

presented in section 6. Section 7 concludes the paper. 

2. Related Work 

A great many researchers have been working on 

galaxy finding algorithms [9][11][12] and their 

parallelization. Ying Liu et al have come up with a 

parallel implementation of the HOP algorithm using MPI 

[13], and they tested their program using a cosmological 

simulation application called ENZO. A density-based 

distributed clustering algorithm implemented with Dryad 

and DryadLINQ was proposed by YongChul Kwon [6]. 

They paralleled the traditional FoF algorithm and came 

up with the dFoF algorithm. Our work is different from 

their works in that we parallelized a different group 

finding algorithm HGGF and used UPC as our 

implementation tool. 

UPC has been applied to a wide variety of research 

fields. B. Verleye et al implemented a 2D electrostatic 

Particle-in-Cell algorithm with UPC which can be used 

in plasma and gravitational simulations [14]. C. Teijeiro 

et al presented their parallel design and implementation 

of Brownian dynamics simulations with both MPI and 

UPC [15], and they found that UPC had the advantage of 

easiness in quick code development due to its shared 

memory view, and the performance was comparable to its 

MPI counterpart. Recently Pedro Valero-Lara et al 

compared the performance of UPC and MPI version of 

Boltzmann fluid simulations [16]. 

3. Background 

3.1 The HGGF Algorithm 

The HGGF algorithm tries to find galaxy groups in 

three dimensional space according to properties of the 

galaxies, such as their coordinates, velocity dispersion, 

luminosity, mass and redshift etc. Fig. 1 shows the major 

steps of the algorithm. 

In the galaxy coordinates mapping step, the 

coordinates of a galaxy will be scaled and normalized to 

be in the range of 0 to Ls-1. Each galaxy will be put in a 

cubic box whose length of the side is Ls. Then the new 



 

 

coordinates are used to calculate ibox. 

Ὥὦέὼὼ ώ ὒzίᾀ ὒzί 

Galaxies with the same ibox value are linked via a linked-

list like data structure which is implemented using an 

array. The diagrammatic sketch of this structure is shown 

in Fig. 2. The numbers above the grid are array indices, 

and the numbers inside the boxes indicate the galaxy ID 

of the next galaxy with the same ibox value. There is 

another array entry_record which records the entry 

galaxy for each ibox. As an example, if galaxies with ID 

0, 1, 10, 28 have the same ibox value, let it be x, after the 

mapping, they will be linked together. The entry galaxy 

ID of these galaxies is 28, and this information will be 

recorded in entry_record. With the help of the linked-list 

like data structure, we know the next galaxy with ibox = 

x is galaxy 10, and the next is 1 and so on. 

Fig. 1: Flow chart of HGGF algorithm 

Fig. 2: Linked-list of galaxy with same ibox 

 

Fig. 3: Search region for galaxy group center 

 

In the group search step, each group is searched 

based on its center. For each group center, all the possible 

ibox values within the search radius r in x, y and z 

directions are computed. Fig. 3 demonstrates the search 

region for a galaxy center in 2D plane. The green point is 

a galaxy group center, and the dashed lines form the 

search region for this center. Red galaxies within the 

square are potential group members and they are checked 

in parallel with OpenMP threads, and this process is 

mainly memory bounded since the calculation is not 

intensive but a lot of semi-random memory access are 

involved. 

Two phases are required for galaxy sifting. The 

following formulas are used in the first phase. 

ὧέὲὨρ ὶίὶίρ

ὧέὲὨς ὼ ὼρ ώ ώρ ᾀ ᾀρ ὧέὲὨρ
 

Here x, y, and z are the 3D coordinates for the galaxy 

to be examined while x1, y1 and z1 are the coordinates 

for the group center. rs and rs1 are the redshift for the 

galaxy and group center respectively. If cond1 and cond2 

for a galaxy satisfy certain conditions, it will be added to 

the candidate galaxy list. After the candidate galaxy list 

is constructed, the density contrast for each galaxy 

against the group center will be calculated in the second 

phase [8]. If the candidate galaxy satisfies the required 

criteria, it will be regarded as a group member of this 

group, and the group center information for this galaxy 

will be changed. 

According to the work done in the previous step, in 

the group property calculation step, group linking 

information will be updated, and new group property 

values will be calculated.  

3.2 Unified Parallel C 

UPC provides an abstract global memory address 

space constructed with physically parted or shared 

memory, and programs can use the global space without 

concerning the details. Memory space of each UPC 

process is divided into private memory space and shared 

memory space. Single Program Multiple Data (SPMD) 

model is employed in UPC programs, therefore each 

process can have different execution path according to its 

unique identifier. 

UPC is chosen as our implementation tool instead 

of MPI for the reason that, unlike MPI which uses 

send/receive for data transfer, remote memory access in 



 

 

UPC programs is just like array access and such syntax 

makes the program more concise and provides great 

convenience in writing code. 

The UPC implementation we choose is Berkeley 

UPC, a portable, high performance UPC implementation 

for various computer systems. While Berkeley UPC 

serves as the runtime for UPC programs, GNU UPC 

compiler serves as the underlying compiler since 

OpenMP is used in our program and OpenMP and UPC 

hybrid programing is not supported by the translator 

provided by Berkeley UPC. 

3.3 An Overview of SGI UV 2000 

 SGI is a leading company in developing Coherent 

shared memory (CSM) machines, which are used in a 

wide range of applications including scientific and 

engineering applications, and large databases. SGI UV 

2000 is the sixth generation of this kind of machine from 

this company. SGI NUMAlink® interconnect provides 

the high-bandwidth, low-latency, coherence-optimized 

functionality for such machines and it enables scaling up 

to thousands of CPU cores. SGI UV 2000 is equipped 

with Intel® Xeon® processors and it provides up to 64TB 

memory [19]. The shared memory space of the machine 

is based on NUMA architecture, meaning that memory 

access latency for local memory is different from the 

latency for memory attached to other CPUs. 

4. Application Profiling 

4.1 Performance Bottleneck 

Fig. 4: Profiling result of HGGF algorithm 

 

The hotspot of HGGF algorithm is the search 

function. Fig. 4 shows that this function takes about 90% 

of the execution time.   The main part of this function is 

an outer loop. Each iteration of this loop processes a 

potential galaxy group center, and the galaxies around the 

centers are checked in an inner loop. The pseudo code for 

the inner loop is shown in Fig. 5. 

This checking process is parallelized with optimized 

OpenMP implementation [20] where each thread checks 

a certain amount of nearby galaxies to determine whether 

this galaxy is needed for further check. At the end of each 

outer loop iteration, the galaxy center and the potential 

members are passed to property1 function to calculate 

their density contrast to finalize their membership. 

Fig.5: Pseudo code for inner loop in search function 

 

Fig. 6 shows the Intel VTune General Exploration 

result. The red shadowed parts show that the code is 

bounded by memory access. The reason is that the ID of 

galaxies with the same ibox are stored in the linked-list 

like data structure and they are not consecutive in 

memory, therefore in order to get each galaxy ID with the 

same ibox value, a series of non-consecutive memory 

access is needed. Moreover, the actual galaxy data access 

also has an irregular memory access behavior. Profiling 

result shows that CPI and speculation for this part of the 

code are not desirable due to this factor. Therefore, the 

algorithm is mainly memory bounded due to these 

inconsecutive semi-random galaxy data accesses. 

Current OpenMP implementation sets a limit on the 

application of the algorithm to large-scale galaxy group 

finding problems. In HGGF algorithm, the parameter 

Nsample affects the input problem size to the algorithm. 

For different problem size, the observed memory 

requirement is shown in Table 1. On a single fat node of 

our cluster 256GB memory is provided. Therefore, the 

largest problem size that can fit into its memory is 

Nsample = 512. We can see that the memory requirement 

increases linearly as Nsample grows, therefore its 

memory is not sufficient for larger problems. Based on 

the study by Xiaohu Yang et al [8], Nsample = 1024 can 

achieve more meaningful experiment result, thus a new 

method must be brought up. 

1. for each position within the search radius 

2.    calculate ibox for this position 

3.    for each galaxy of this ibox value 

4.        if it satisfies cond1 and cond2 

5.            add to candidate list 

6.      end if 

7.    end for 

8.  end for 



 

 

Table 1. Memory use for different problem size 

Nsample 8 16 32 64 128 256 512 

Memory (GB) 3.64 7.24 14.45 28.85 57.66 115.28 230.53 

 

4.2 Profiling OpenMP HGGF on a SGI machine 

We also carried out profiling on a SGI UV 2000 

machine. This machine has 32 CPUs, each of which 

consists of 16 cores. The cores on one CPU share 128GB 

local memory that is attached to the CPU whose access 

latency is low. All the memory on all CPUs form a 4TB 

shared memory space. From the profiling result we can 

see that pure OpenMP implementation won't benefit from 

the use of large number of threads. The reason is threefold. 

 

Fig. 7: Inner loop time for 16 OpenMP threads 

 

Firstly, the disparity of memory access speed for 

different CPU in NUMA architecture limit the usefulness  

 

Fig. 8: Inner loop time for 32 OpenMP threads 

 

of large number of threads. From Fig. 7 we can see that 

when the program is run with 16 threads, the execution 

time is relatively even for each thread. The reason is that  

all these threads are running on the same CPU and all the 

memory access are local. However, if the number of 

threads is increased to 32 as shown in Fig. 8, 2 CPUs will 

be involved, and the time spent in the inner for loop 

Fig. 6: Intel VTune profiling result 

(a). General Exploitation result for search 

function 

(b). Bottleneck within search function 



 

 

becomes quite different for these threads. The reason is 

that galaxy data are read by master thread during data 

input phase, therefore they are all located in the CPU that 

master thread runs on. As we can see, the 16 threads that 

runs on the cores that have local memory access are faster 

compared to using only 16 threads since the workload for 

these threads is reduced due to the increase in threads. 

However, the time for the other 16 threads that reside on 

the other CPU is longer due to remote memory access, 

and this prolongs the overall time. If the threads count is 

increased to a larger number, this phenomenon becomes 

even more obvious.  

Secondly, due to the nature of the algorithm, 

memory access for fetching galaxy data on each thread 

cannot be predetermined since a thread does not know 

which galaxy it will need in the future, therefore it is not 

possible to use first-touch policy during input phase to 

put galaxy data that will be needed by some thread in its 

local memory. We can use numactl to manually control 

the data placement so that the memory is allocated on two 

CPUs in a round-robin way. But the execution time won’t 

improve since now every thread has some galaxy data 

fetched from remote memory and this decreases the 

overall performance. 

Thirdly, as the number of threads increases the time 

spent in fork/join of OpenMP threads increases as well, 

and this overhead decreases the performance.  

Therefore, in order to further accelerate the 

algorithm and solve larger size galaxy grouping problems, 

it is necessary to implement two-level parallelism. 

5. Parallel Design and Implementation 

5.1 Load-balance Domain Decomposition 

The major goals of our design are to decrease the 

memory requirement on a single node and accelerate the 

group finding procedure. Therefore, the core idea of the 

parallel algorithm design is to divide galaxies according 

to their three dimensional coordinates. 

Proper domain decomposition and border galaxy 

management is essential to the solution. Right choice 

regarding these issues can improve work balance and 

decrease communication. After analyzing and 

visualization of the galaxy data (Fig. 9 shows the 

distribution of galaxies in SDSS data set from different 

perspectives, from left to right are X-Y perspective, X-Z 

perspective and Y-Z perspective), we can see that 

galaxies are distributed relatively even from Y-Z 

perspective, therefore dividing galaxies from this plane is 

desirable. 

An illustration of the domain decomposition for 4 

UPC processes is shown in Fig. 10. The space is divided 

into 4 parts by the blue lines, making the number of 

galaxies in each of the area as even as possible. The area 

that each process is responsible for is called managed 

area for each process. The managed area for P0 (UPC 

process whose identifier is 0) is marked with blue 

shadow. Each managed area is extended by a search 

radius r, and this area, which is called adjacent area, 

for P0 is denoted with orange shadow. 

Fig. 10: Galaxy domain decomposition for 4 UPC processes 

Fig. 9: Galaxy distribution from different perspectives 



 

 

5.2 Local Cache for Remote Galaxy 

During data input phase, the galaxies that reside in 

the managed area and adjacent area of a certain process 

are stored in the managed galaxy list and adjacent 

galaxy list of that process. 

In the group searching procedure, most of the galaxy 

centers can find the galaxies within their search radius in  

the managed galaxy list. However, the galaxy centers on 

the border of the managed area of a process may need 

galaxies outside its managed area. Of course they can 

fetch the galaxies directly from shared memory space on 

another process, but the downside is that this operation 

incurs remote memory access, and it can be detrimental 

to the performance. The adjacent galaxy list is used to 

reduce such expensive remote memory accesses. 

 

Fig. 11: Managed galaxy and adjacent galaxy list  

Fig. 12: Adjacent galaxy map and list 

 

Fig. 11 gives an illustration of the use of managed 

galaxy list and adjacent galaxy list. During group 

searching, each process will be in charge of the update of 

group information of its managed galaxies. For example, 

galaxy A and B are managed galaxies of P0. For group 

center B, it checks the galaxies within its search radius, 

which are all in the managed galaxy list. However, for 

group center A, since it is on the border of the managed 

area of P0, some of its neighbor galaxies that are within 

the search radius of A are actually managed galaxies of 

another process. Instead of fetching them from the 

managed galaxy list in remote processes, we can fetch 

them from the locally stored adjacent galaxy list, thus 

reducing the communication overhead.  

Each process has a map which indicates the adjacent 

galaxies it holds. The length of the map is the number of 

total galaxies, and each entry of the map stores either the 

local index of an adjacent galaxy, or -1 to indicate that 

this galaxy does not exist in its adjacent galaxy list. This 

map is used to translate global galaxy ID to local galaxy 

ID in adjacent galaxy list. 

A demonstration of the use of the map is shown in 

Fig. 12. From the figure we can see that this process has 

2345 adjacent galaxies, including galaxies with global ID 

2, 12, 600, 623, and N-1 etc. Galaxy with global ID 2 is 

the first adjacent galaxy of this process, which can be 

found by checking entry 2 of its adjacent galaxy map, and 

the existence indicator 0 tells us the local index of the 

galaxy in adjacent galaxy list. However, Galaxy 645 is 

not in the adjacent galaxy list of this process since the 

existence indicator of that entry is -1.  

5.3 UPC Implementation and Optimization 

As we have mentioned, UPC provides a global 

memory view. On clusters, data are actually distributed in 

several nodes although from the program’s view they are 

in the same memory space. In order to reduce memory 

use on one node, the galaxy data must be distributed to 

all nodes. There are two ways to do so: implicit data 

distribution and explicit data distribution. with implicit 

distribution, galaxy data are stored in a large array, and 

the elements of the array are distributed to all processes 

in a round-robin way by default. The advantage for this 

strategy is that we are not concerned with data 

distribution and the modification to the code is minimal, 

however, the performance is damaged due to lack of data 

locality. In explicit data distribution, each process 

dynamically allocates memory in shared memory space 

to store galaxies that belong to the managed area and 

adjacent area of that process. Remote memory access can 

be eliminated with this method at the expense of manual 

control of data distribution among processes. 

During galaxy coordinates mapping procedure, the 

coordinates of each galaxy must be known to the major 

process to do the scaling and mapping. Since managed 

galaxies are stored in the shared memory space of each 

process, their coordinates can be accessed directly by 



 

 

P0. The problem is that this kind of implementation 

would involve a huge amount of fine-grained remote 

memory access, and it will hurt the performance. 

Therefore, instead of reading one coordinate a time from 

a remote process, the major process transfers galaxies 

from other processes in bulk using upc_memget() and 

puts them into a local buffer. After getting coordinates 

of a chunk of galaxies in the buffer, it reads coordinates 

of these galaxies locally, then it fetches the next bulk of 

galaxies until all the galaxies are dealt with. 

After search, new groups of galaxies are formed. 

The galaxies in the same group are linked together and 

new group properties are calculated. During this process, 

the problem mentioned above also poses a threat to the 

performance. Thus similar optimization can be applied. 

We build the galaxy link information on the major 

process P0, then it uses bulk memory movement 

functions to send the link information to all other 

processes. In this way, we convert frequent remote 

memory access to bulk memory transfer plus local 

memory access. 

6. Performance Evaluation 

 Our experiments were carried out on the 

supercomputer Pi of Shanghai Jiao Tong University and 

a SGI UV 2000 machine. The hardware and software 

configuration for the compute node of our cluster and the 

SGI machine are presented in Table. 2 and Table. 3. 

Table 2. Compute node configuration 

Processor Intel(R) Xeon(R) CPU E5-2670 2.60GHz X 2 

Memory 256GB DDR3 1600MHz 

Interconnect Infiniband FDR MSX6536-10R 

OS CentOS 6.7 

Compiler GNU UPC compiler (GUPC) 5.2.0.1 

UPC Runtime Berkeley UPC 2.22.3 

Table 3. SGI UV 2000 configuration 

Processor Intel(R) Xeon(R) CPU E5-4620 v2 2.60GHz X 32 

Memory 4TB DDR3 1600MHz 

Interconnect NUMAlink 6 

OS SUSE Linux Enterprise Server 11 

Compiler GCC 5.2 

 We conducted our experiment of pure OpenMP 

version on a single fat node with 16 threads and the SGI 

UV 2000 machine with 16, 64 and 256 threads. For the 

UPC version, experiments were done using 4, 8 and 16 

nodes, each with 1 UPC process that had 16 OpenMP 

threads. 

6.1 Implicit vs. Explicit Data Distribution 

 Kernel time for implicit and explicit data 

distribution version with 4 UPC processes are presented 

in Table. 4. As we can see, the running time for implicit 

version is two orders of magnitude longer than that of the 

explicit version. This is because in implicit version, 

galaxy data are distributed to all nodes in a round-robin 

fashion according to their global galaxy ID without 

concerning about their spatial location. Therefore, during 

the group search step little data locality exists, and there 

are a lot of remote memory accesses on each process. In 

fact, with 4 processes, only about 25% galaxy are stored 

in the local memory for each process. Therefore, the 

performance of implicit data distribution is not 

satisfactory although it is easier to implement. Such data 

placement strategy is not suitable for HGGF algorithm. 

Table 4. Kernel time for implicit data distribution vs. explicit data 

distribution version 

Nsample 8 16 32 64 

Implicit 23966.10 47901.93 95370.72 196321.20 

Explicit 132.59 251.34 490.093 996.98 

 

6.2 Bulk Memory vs. Non-bulk Memory Transfer 

 As previously mentioned, coordinates mapping and 

galaxy group linking require frequent fine-grained 

remote memory access. Therefore, we use the bulk 

memory transfer technique to reduce the cost. 

 Table. 5 and Table. 6 demonstrate the time spent in 

these two procedures with different problem size. The 

experiments are carried out using 4 UPC processes. From 

the result we can see that the non-bulk version with direct 

remote memory access is much slower. With the help of 

bulk memory transfer optimization, the time spent in 

coordinates mapping is two orders of magnitude shorter 

than that of the non-bulk transfer version. Time spent in 

galaxy linking procedure also experiences a speedup of 

around 4-5 compared with the non-bulk transfer version. 

The reason why the speedup for the latter is not as 

dramatic as that of the former is that in the galaxy linking 

function remote memory accesses still exist because 

information needed by the master process to construct 

new links locally need to be fetched from other processes. 

 

 

 



 

 

Table 5. Time for non-bulk and bulk memory transfer version of 

coordinates mapping 

Nsample 8 16 32 64 128 256 512 

Non-bulk 26.83 45.55 128.45 231.77 410.04 1278.82 2842.63 

Bulk 0.26 0.50 1.02 2.10 4.19 7.78 16.34 

 

Table 6. Time for non-bulk and bulk memory transfer version of 

galaxy linking 

Nsample 8 16 32 64 128 256 512 

Non-bulk 100.40 207.53 511.96 947.99 1652.66 5274.92 11063.74 

Bulk 18.87 44.85 101.36 196.84 422.23 963.90 1455.75 

As we can see, although UPC provides a handy 

global memory view for programs, to achieve optimal 

performance, hand-tuning of the code is necessary.  

6.3 The Effectiveness of Adjacent Galaxy List Design 

Table. 7 shows the time spent in kernel for 4 

processes with and without adjacent galaxy list for 

Nsample ranging from 8 to 64. Without adjacent galaxy 

list, galaxies within the search radius of border group 

centers must be fetched from the shared memory space 

on other processes, therefore the performance is much 

slower, which demonstrates the effectiveness of our 

design. 

Table 7. Kernel time for UPC version with and without adjacent 

galaxy list 

Nsample 8 16 32 64 

Implicit 12861.23 24254.31 47686.04 96131.80 

Explicit 132.59 251.34 490.093 996.98 

 

6.4 Memory Requirement and Running Time 

The major goal of our design and implementation is 

to reduce the memory requirement on a single node. A 

comparison of memory requirement on a single node for 

different node count is presented in Fig. 13. With 4 UPC 

processes running on 4 nodes, memory requirement on a 

single node is reduced by 67.5%, and for 8 nodes and 16 

nodes, the reduction is further increased to 76.2% and 

85.3% respectively. For Nsample = 1024, since it cannot 

fit into the fat node of our cluster, the value for OpenMP 

version is estimated based on the fact that memory 

consumption increases almost linearly as problem size 

grows. 

One thing to notice, the memory usage of UPC 

version on a single node is not the total memory usage of 

OpenMP version divided by the number of nodes, this is 

because that our design incurs other memory 

consumption that does not exist in OpenMP version. For 

example, the adjacent galaxy list on each UPC process 

stores a copy of galaxies on the border of other processes, 

which is only necessary in UPC version since in OpenMP 

version all galaxy data are stored in the memory space of 

a single node, which can be directly read by all threads, 

therefore no duplication of galaxies is needed. 

Fig. 13: Memory requirement for different number of nodes 

Fig.14: Total time on cluster 

Fig.15: Kernel time on cluster 



 

 

 

Fig. 16: Total time on SGI UV 2000 

 

Fig. 17: Kernel time on SGI UV 2000 

 

Fig. 14 and Fig. 15 show the overall running time 

and kernel time for OpenMP version and UPC version 

(with adjacent galaxy list) with 4 processes, 8 processes 

and 16 processes running on our cluster with various 

problem sizes. 

Since the memory on a compute node is not 

sufficient for problem of Nsample = 1024, the time of 

OpenMP version of that size is estimated according to the 

fact that it increases linearly as Nsample grows. 

Compared with single-node OpenMP version, the 

average speedups of kernel for 4-process, 8-process and 

16-process configurations are 2.25, 2.78 and 5.07 

respectively. As for the total running time, 1.69, 1.90 and 

2.63 times speedup are achieved respectively. 

 The execution time is closely related to how the 

domain is decomposed. We try to divide the space in a 

way that each process holds a relatively even number of 

galaxies so that the memory requirement on each node 

can be more even. However, due to the disparity of galaxy 

distribution density in the data, double the number of 

nodes may not reduce the time by half since the high 

density area dominates the execution time.  

We also carried out the OpenMP version experiment 

on the SGI UV 2000 machine. Fig. 16 and Fig. 17 show 

a comparison of performance between a single cluster 

node and the SGI machine. As we can see, when both 

using 16 OpenMP threads, the performance on the SGI 

machine is better than that of a compute node on our 

cluster since its CPU is more advanced. However, when 

using 64 threads, the performance becomes poorer, this is 

due to the reason we discussed in section 4.2. After 

increasing the number of threads to 256, the performance 

continues to degenerate, this is caused both by OpenMP 

fork/join overhead due to larger number of threads and 

remote memory access. However, since more threads are 

employed, the workload for each thread is reduced, and 

this has a positive impact on the performance. Due to the 

mixed effect of these factors, the overall performance is 

only slightly worse than that of 64 threads. 

 With equal number of cores, our two-level UPC + 

OpenMP implementation of the program has better 

performance over pure OpenMP version due to better 

data locality and lower OpenMP overhead. 

7. Conclusion and Future Work 

We presented our parallel design and UPC 

implementation of the HGGF algorithm. Domain 

decomposition of galaxy data according to their spatial 

coordinates is done to distribute galaxy data to multiple 

nodes to solve the single node memory limit problem. 

The major hurdle for parallelizing HGGF with multiple 

nodes is expensive remote memory access due to the 

semi-random galaxy access behavior of the program. To 

avoid such a problem, we proposed the adjacent galaxy 

list design. Our experiment results show that our two-

level UPC + OpenMP design is effective in accelerating 

the algorithm and reducing the single node memory 

requirement. 

Implicit and explicit data distribution and bulk 

memory transfer optimization in UPC program are 

studied, and the result shows that although implicit data 

distribution is easier in coding, it may not present the best 



 

 

performance for programs like HGGF. Meanwhile, in 

order to achieve better performance, optimization 

techniques such as bulk memory transfer are necessary 

due to limitations such as compiler optimization. 

 From our study, we can also see that for programs 

which are bound by frequent semi-random memory 

access like HGGF, users may need to pay special 

attention when using computers like SGI machines. 

Memory latency may pose a threat to the performance on 

such machines for these programs. 

 Our next step will be devise a more sophisticated 

domain decomposition strategy which can improve the 

load-balancing between nodes to further accelerate the 

performance. 
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