

Optimizing a Galaxy Group Finding Algorithm on SMP vs. Distributed-

Memory Cluster

Yumeng Si1 Jianwen Wei1 Simon See1,2 James Lin1

1Center for High Performance Center, Shanghai Jiao Tong University, Shanghai, 200240

2NVIDIA Technology Center Asia Pacific, Singapore

Corresponding author: Jianwen Wei, Email: weijianwen@sjtu.edu.cn, Website: http://hpc.sjtu.edu.cn

Abstract Halo-based Galaxy Group Finder (HGGF) is an effective algorithm that accomplishes the task of galaxy group

finding which takes various properties of galaxies into consideration when assigning them into groups. However, current

pure OpenMP implementation of the algorithm is limited by the resource of the underlying single compute node,

especially its memory, when dealing with large-scale group finding problems. Therefore, it is essential to redesign the

algorithm to port the code to multiple nodes in order to further reduce execution time in group finding procedure, and

more importantly, to make it possible to solve large-size galaxy group finding problems. The major hurdle for such

attempt is remote memory access due to semi-random galaxy access in the algorithm. To tackle such a problem, we

proposed a parallel design of HGGF algorithm and a Unified Parallel C (UPC) implementation of it. With the help of

our adjacent galaxy list design, we achieved about 2.25, 2.78 and 5.07 times speedup for the kernel part of the algorithm

with 4, 8 and 16 nodes respectively, and for the whole program, 1.69, 1.90 and 2.63 times speedup were achieved.

Meanwhile, the memory requirement on each node was also reduced significantly. Our experiments also show that

programs with semi-random memory access behavior like HGGF may not readily benefit from large shared memory

systems with NUMA architecture. Two-level parallel design that takes advantage of data locality on distributed memory

clusters may be a better solution.

Key words galaxy group finding; Unified Parallel C; parallel computing; OpenMP

1. Introduction

Owing to the rapid development of science and

technology, the total amount of data produced in the field

of astronomy has been increasing exponentially. Today's

astronomers are heavily relying on various data collected

from telescope or computer simulation (such as data from

2-degree Field Galaxy Redshift Survey [1], Sloan Digital

Sky Survey [2], the Q continuum simulation [3] and the

Millennium simulations [4]). The capture and analysis of

astronomical data have become an indispensable

component of contemporary cosmology studies. Now we

are facing a great challenge regarding our ability to

process and analyze the obtained information, and this

has become a bottleneck of today's astronomy

exploration [6].

One of the most compelling topics in astronomy

research is the formation and structure of galaxy groups.

A large number of studies have been focusing on this

topic, such as the construction of galaxy group catalogue

from 2dFGRS by V.R. Eke et al [5]. Halo-based galaxy

group finder (HGGF) is a group finding algorithm

proposed by Prof. Xiaohu Yang et al [7][8]. It groups

galaxies together based on their properties and the dark

matter halo that galaxies reside in. This algorithm has

been applied to a wide range of astronomy data, such as

2dFGRS and SDSS etc. This algorithm is based on the

traditional Friends-of-Friends (FoF) group finder [9], and

it has made several improvements in many aspects.

Therefore, it is more accurate and can enable the

sampling of a wider dynamic range of group mass [8].

However, as the size of the input galaxy data

augments, the current implementation of the algorithm

cannot satisfy our needs. Most importantly, the memory

on a single node is limited, therefore huge workload

cannot fit into the physical memory (for large-scale group

finding problems, the memory consumption can range

mailto:weijianwen@sjtu.edu.cn

from several hundred GB to several TB). This poses a

threat to our knowledge discovery, thus new method must

be proposed to tackle such a problem.

Partitioned Global Address Space (PGAS) model

has become increasingly popular in recent years as an

alternative to MPI on distributed memory architectures.

PGAS model possesses the programming convenience of

shared memory and the flexible control of message

passing. Common PGAS languages include Unified

Parallel C (UPC), Co-Array Fortran (CAF), X-10 and

Titanium etc. UPC is an extension of ISO C99 Standard

with parallel programming support [10].

In this paper, we introduce our parallel design and

implementation of the HGGF algorithm. We decompose

the problem space and let each UPC process take charge

of a subspace, therefore processes can take advantage of

data locality when calculating groups. Experiments have

shown that with 4, 8 and 16 UPC processes, memory

requirement on a single node are reduced by 67.5%, 76.2%

and 85.3%, meanwhile 1.69, 1.90 and 2.63 times total

speedup are achieved.

The contributions of our work include:

1. An effective two-level parallel design and

implementation of HGGF algorithm which

solves the single node memory limitation

problem involved in large-scale galaxy group

finding. The adjacent galaxy list design can

eliminate expensive remote memory access

and improve performance on multiple nodes.

Such strategy may be applied to similar

applications.

2. A study of different data distribution methods

(explicit and implicit) and bulk memory

transfer optimization in UPC programs. Their

impact on performance is examined and the

result shows that although UPC provides a

convenient programing interface for

programmers, hand-tuning and optimization

are necessary if optimal performance is desired.

3. Tests and analysis on a SGI machine which

indicate that programs sensitive to memory

access like HGGF may not readily benefit from

the computing power provided by such

machines, therefore to parallelize such

algorithms, users may need to either put extra

effort to fully utilize such hardware or use two-

level algorithm design to exploit data locality

on clusters or distributed memory systems.

The rest of this paper is organized as follows. Next

section introduces related studies. Section 3 introduces

necessary background. Section 4 introduces the profiling

result on a cluster and a SGI machine. Our design,

implementation and optimization of the algorithm are

described in section 5. Performance evaluation is

presented in section 6. Section 7 concludes the paper.

2. Related Work

A great many researchers have been working on

galaxy finding algorithms [9][11][12] and their

parallelization. Ying Liu et al have come up with a

parallel implementation of the HOP algorithm using MPI

[13], and they tested their program using a cosmological

simulation application called ENZO. A density-based

distributed clustering algorithm implemented with Dryad

and DryadLINQ was proposed by YongChul Kwon [6].

They paralleled the traditional FoF algorithm and came

up with the dFoF algorithm. Our work is different from

their works in that we parallelized a different group

finding algorithm HGGF and used UPC as our

implementation tool.

UPC has been applied to a wide variety of research

fields. B. Verleye et al implemented a 2D electrostatic

Particle-in-Cell algorithm with UPC which can be used

in plasma and gravitational simulations [14]. C. Teijeiro

et al presented their parallel design and implementation

of Brownian dynamics simulations with both MPI and

UPC [15], and they found that UPC had the advantage of

easiness in quick code development due to its shared

memory view, and the performance was comparable to its

MPI counterpart. Recently Pedro Valero-Lara et al

compared the performance of UPC and MPI version of

Boltzmann fluid simulations [16].

3. Background

3.1 The HGGF Algorithm

The HGGF algorithm tries to find galaxy groups in

three dimensional space according to properties of the

galaxies, such as their coordinates, velocity dispersion,

luminosity, mass and redshift etc. Fig. 1 shows the major

steps of the algorithm.

In the galaxy coordinates mapping step, the

coordinates of a galaxy will be scaled and normalized to

be in the range of 0 to Ls-1. Each galaxy will be put in a

cubic box whose length of the side is Ls. Then the new

coordinates are used to calculate ibox.

Ὥὦέὼὼ ώ ὒzίᾀ ὒzί

Galaxies with the same ibox value are linked via a linked-

list like data structure which is implemented using an

array. The diagrammatic sketch of this structure is shown

in Fig. 2. The numbers above the grid are array indices,

and the numbers inside the boxes indicate the galaxy ID

of the next galaxy with the same ibox value. There is

another array entry_record which records the entry

galaxy for each ibox. As an example, if galaxies with ID

0, 1, 10, 28 have the same ibox value, let it be x, after the

mapping, they will be linked together. The entry galaxy

ID of these galaxies is 28, and this information will be

recorded in entry_record. With the help of the linked-list

like data structure, we know the next galaxy with ibox =

x is galaxy 10, and the next is 1 and so on.

Fig. 1: Flow chart of HGGF algorithm

Fig. 2: Linked-list of galaxy with same ibox

Fig. 3: Search region for galaxy group center

In the group search step, each group is searched

based on its center. For each group center, all the possible

ibox values within the search radius r in x, y and z

directions are computed. Fig. 3 demonstrates the search

region for a galaxy center in 2D plane. The green point is

a galaxy group center, and the dashed lines form the

search region for this center. Red galaxies within the

square are potential group members and they are checked

in parallel with OpenMP threads, and this process is

mainly memory bounded since the calculation is not

intensive but a lot of semi-random memory access are

involved.

Two phases are required for galaxy sifting. The

following formulas are used in the first phase.

ὧέὲὨρ ὶίὶίρ

ὧέὲὨς ὼ ὼρ ώ ώρ ᾀ ᾀρ ὧέὲὨρ

Here x, y, and z are the 3D coordinates for the galaxy

to be examined while x1, y1 and z1 are the coordinates

for the group center. rs and rs1 are the redshift for the

galaxy and group center respectively. If cond1 and cond2

for a galaxy satisfy certain conditions, it will be added to

the candidate galaxy list. After the candidate galaxy list

is constructed, the density contrast for each galaxy

against the group center will be calculated in the second

phase [8]. If the candidate galaxy satisfies the required

criteria, it will be regarded as a group member of this

group, and the group center information for this galaxy

will be changed.

According to the work done in the previous step, in

the group property calculation step, group linking

information will be updated, and new group property

values will be calculated.

3.2 Unified Parallel C

UPC provides an abstract global memory address

space constructed with physically parted or shared

memory, and programs can use the global space without

concerning the details. Memory space of each UPC

process is divided into private memory space and shared

memory space. Single Program Multiple Data (SPMD)

model is employed in UPC programs, therefore each

process can have different execution path according to its

unique identifier.

UPC is chosen as our implementation tool instead

of MPI for the reason that, unlike MPI which uses

send/receive for data transfer, remote memory access in

UPC programs is just like array access and such syntax

makes the program more concise and provides great

convenience in writing code.

The UPC implementation we choose is Berkeley

UPC, a portable, high performance UPC implementation

for various computer systems. While Berkeley UPC

serves as the runtime for UPC programs, GNU UPC

compiler serves as the underlying compiler since

OpenMP is used in our program and OpenMP and UPC

hybrid programing is not supported by the translator

provided by Berkeley UPC.

3.3 An Overview of SGI UV 2000

 SGI is a leading company in developing Coherent

shared memory (CSM) machines, which are used in a

wide range of applications including scientific and

engineering applications, and large databases. SGI UV

2000 is the sixth generation of this kind of machine from

this company. SGI NUMAlink® interconnect provides

the high-bandwidth, low-latency, coherence-optimized

functionality for such machines and it enables scaling up

to thousands of CPU cores. SGI UV 2000 is equipped

with Intel® Xeon® processors and it provides up to 64TB

memory [19]. The shared memory space of the machine

is based on NUMA architecture, meaning that memory

access latency for local memory is different from the

latency for memory attached to other CPUs.

4. Application Profiling

4.1 Performance Bottleneck

Fig. 4: Profiling result of HGGF algorithm

The hotspot of HGGF algorithm is the search

function. Fig. 4 shows that this function takes about 90%

of the execution time. The main part of this function is

an outer loop. Each iteration of this loop processes a

potential galaxy group center, and the galaxies around the

centers are checked in an inner loop. The pseudo code for

the inner loop is shown in Fig. 5.

This checking process is parallelized with optimized

OpenMP implementation [20] where each thread checks

a certain amount of nearby galaxies to determine whether

this galaxy is needed for further check. At the end of each

outer loop iteration, the galaxy center and the potential

members are passed to property1 function to calculate

their density contrast to finalize their membership.

Fig.5: Pseudo code for inner loop in search function

Fig. 6 shows the Intel VTune General Exploration

result. The red shadowed parts show that the code is

bounded by memory access. The reason is that the ID of

galaxies with the same ibox are stored in the linked-list

like data structure and they are not consecutive in

memory, therefore in order to get each galaxy ID with the

same ibox value, a series of non-consecutive memory

access is needed. Moreover, the actual galaxy data access

also has an irregular memory access behavior. Profiling

result shows that CPI and speculation for this part of the

code are not desirable due to this factor. Therefore, the

algorithm is mainly memory bounded due to these

inconsecutive semi-random galaxy data accesses.

Current OpenMP implementation sets a limit on the

application of the algorithm to large-scale galaxy group

finding problems. In HGGF algorithm, the parameter

Nsample affects the input problem size to the algorithm.

For different problem size, the observed memory

requirement is shown in Table 1. On a single fat node of

our cluster 256GB memory is provided. Therefore, the

largest problem size that can fit into its memory is

Nsample = 512. We can see that the memory requirement

increases linearly as Nsample grows, therefore its

memory is not sufficient for larger problems. Based on

the study by Xiaohu Yang et al [8], Nsample = 1024 can

achieve more meaningful experiment result, thus a new

method must be brought up.

1. for each position within the search radius

2. calculate ibox for this position

3. for each galaxy of this ibox value

4. if it satisfies cond1 and cond2

5. add to candidate list

6. end if

7. end for

8. end for

Table 1. Memory use for different problem size

Nsample 8 16 32 64 128 256 512

Memory (GB) 3.64 7.24 14.45 28.85 57.66 115.28 230.53

4.2 Profiling OpenMP HGGF on a SGI machine

We also carried out profiling on a SGI UV 2000

machine. This machine has 32 CPUs, each of which

consists of 16 cores. The cores on one CPU share 128GB

local memory that is attached to the CPU whose access

latency is low. All the memory on all CPUs form a 4TB

shared memory space. From the profiling result we can

see that pure OpenMP implementation won't benefit from

the use of large number of threads. The reason is threefold.

Fig. 7: Inner loop time for 16 OpenMP threads

Firstly, the disparity of memory access speed for

different CPU in NUMA architecture limit the usefulness

Fig. 8: Inner loop time for 32 OpenMP threads

of large number of threads. From Fig. 7 we can see that

when the program is run with 16 threads, the execution

time is relatively even for each thread. The reason is that

all these threads are running on the same CPU and all the

memory access are local. However, if the number of

threads is increased to 32 as shown in Fig. 8, 2 CPUs will

be involved, and the time spent in the inner for loop

Fig. 6: Intel VTune profiling result

(a). General Exploitation result for search

function

(b). Bottleneck within search function

becomes quite different for these threads. The reason is

that galaxy data are read by master thread during data

input phase, therefore they are all located in the CPU that

master thread runs on. As we can see, the 16 threads that

runs on the cores that have local memory access are faster

compared to using only 16 threads since the workload for

these threads is reduced due to the increase in threads.

However, the time for the other 16 threads that reside on

the other CPU is longer due to remote memory access,

and this prolongs the overall time. If the threads count is

increased to a larger number, this phenomenon becomes

even more obvious.

Secondly, due to the nature of the algorithm,

memory access for fetching galaxy data on each thread

cannot be predetermined since a thread does not know

which galaxy it will need in the future, therefore it is not

possible to use first-touch policy during input phase to

put galaxy data that will be needed by some thread in its

local memory. We can use numactl to manually control

the data placement so that the memory is allocated on two

CPUs in a round-robin way. But the execution time won’t

improve since now every thread has some galaxy data

fetched from remote memory and this decreases the

overall performance.

Thirdly, as the number of threads increases the time

spent in fork/join of OpenMP threads increases as well,

and this overhead decreases the performance.

Therefore, in order to further accelerate the

algorithm and solve larger size galaxy grouping problems,

it is necessary to implement two-level parallelism.

5. Parallel Design and Implementation

5.1 Load-balance Domain Decomposition

The major goals of our design are to decrease the

memory requirement on a single node and accelerate the

group finding procedure. Therefore, the core idea of the

parallel algorithm design is to divide galaxies according

to their three dimensional coordinates.

Proper domain decomposition and border galaxy

management is essential to the solution. Right choice

regarding these issues can improve work balance and

decrease communication. After analyzing and

visualization of the galaxy data (Fig. 9 shows the

distribution of galaxies in SDSS data set from different

perspectives, from left to right are X-Y perspective, X-Z

perspective and Y-Z perspective), we can see that

galaxies are distributed relatively even from Y-Z

perspective, therefore dividing galaxies from this plane is

desirable.

An illustration of the domain decomposition for 4

UPC processes is shown in Fig. 10. The space is divided

into 4 parts by the blue lines, making the number of

galaxies in each of the area as even as possible. The area

that each process is responsible for is called managed

area for each process. The managed area for P0 (UPC

process whose identifier is 0) is marked with blue

shadow. Each managed area is extended by a search

radius r, and this area, which is called adjacent area,

for P0 is denoted with orange shadow.

Fig. 10: Galaxy domain decomposition for 4 UPC processes

Fig. 9: Galaxy distribution from different perspectives

5.2 Local Cache for Remote Galaxy

During data input phase, the galaxies that reside in

the managed area and adjacent area of a certain process

are stored in the managed galaxy list and adjacent

galaxy list of that process.

In the group searching procedure, most of the galaxy

centers can find the galaxies within their search radius in

the managed galaxy list. However, the galaxy centers on

the border of the managed area of a process may need

galaxies outside its managed area. Of course they can

fetch the galaxies directly from shared memory space on

another process, but the downside is that this operation

incurs remote memory access, and it can be detrimental

to the performance. The adjacent galaxy list is used to

reduce such expensive remote memory accesses.

Fig. 11: Managed galaxy and adjacent galaxy list

Fig. 12: Adjacent galaxy map and list

Fig. 11 gives an illustration of the use of managed

galaxy list and adjacent galaxy list. During group

searching, each process will be in charge of the update of

group information of its managed galaxies. For example,

galaxy A and B are managed galaxies of P0. For group

center B, it checks the galaxies within its search radius,

which are all in the managed galaxy list. However, for

group center A, since it is on the border of the managed

area of P0, some of its neighbor galaxies that are within

the search radius of A are actually managed galaxies of

another process. Instead of fetching them from the

managed galaxy list in remote processes, we can fetch

them from the locally stored adjacent galaxy list, thus

reducing the communication overhead.

Each process has a map which indicates the adjacent

galaxies it holds. The length of the map is the number of

total galaxies, and each entry of the map stores either the

local index of an adjacent galaxy, or -1 to indicate that

this galaxy does not exist in its adjacent galaxy list. This

map is used to translate global galaxy ID to local galaxy

ID in adjacent galaxy list.

A demonstration of the use of the map is shown in

Fig. 12. From the figure we can see that this process has

2345 adjacent galaxies, including galaxies with global ID

2, 12, 600, 623, and N-1 etc. Galaxy with global ID 2 is

the first adjacent galaxy of this process, which can be

found by checking entry 2 of its adjacent galaxy map, and

the existence indicator 0 tells us the local index of the

galaxy in adjacent galaxy list. However, Galaxy 645 is

not in the adjacent galaxy list of this process since the

existence indicator of that entry is -1.

5.3 UPC Implementation and Optimization

As we have mentioned, UPC provides a global

memory view. On clusters, data are actually distributed in

several nodes although from the program’s view they are

in the same memory space. In order to reduce memory

use on one node, the galaxy data must be distributed to

all nodes. There are two ways to do so: implicit data

distribution and explicit data distribution. with implicit

distribution, galaxy data are stored in a large array, and

the elements of the array are distributed to all processes

in a round-robin way by default. The advantage for this

strategy is that we are not concerned with data

distribution and the modification to the code is minimal,

however, the performance is damaged due to lack of data

locality. In explicit data distribution, each process

dynamically allocates memory in shared memory space

to store galaxies that belong to the managed area and

adjacent area of that process. Remote memory access can

be eliminated with this method at the expense of manual

control of data distribution among processes.

During galaxy coordinates mapping procedure, the

coordinates of each galaxy must be known to the major

process to do the scaling and mapping. Since managed

galaxies are stored in the shared memory space of each

process, their coordinates can be accessed directly by

P0. The problem is that this kind of implementation

would involve a huge amount of fine-grained remote

memory access, and it will hurt the performance.

Therefore, instead of reading one coordinate a time from

a remote process, the major process transfers galaxies

from other processes in bulk using upc_memget() and

puts them into a local buffer. After getting coordinates

of a chunk of galaxies in the buffer, it reads coordinates

of these galaxies locally, then it fetches the next bulk of

galaxies until all the galaxies are dealt with.

After search, new groups of galaxies are formed.

The galaxies in the same group are linked together and

new group properties are calculated. During this process,

the problem mentioned above also poses a threat to the

performance. Thus similar optimization can be applied.

We build the galaxy link information on the major

process P0, then it uses bulk memory movement

functions to send the link information to all other

processes. In this way, we convert frequent remote

memory access to bulk memory transfer plus local

memory access.

6. Performance Evaluation

 Our experiments were carried out on the

supercomputer Pi of Shanghai Jiao Tong University and

a SGI UV 2000 machine. The hardware and software

configuration for the compute node of our cluster and the

SGI machine are presented in Table. 2 and Table. 3.

Table 2. Compute node configuration

Processor Intel(R) Xeon(R) CPU E5-2670 2.60GHz X 2

Memory 256GB DDR3 1600MHz

Interconnect Infiniband FDR MSX6536-10R

OS CentOS 6.7

Compiler GNU UPC compiler (GUPC) 5.2.0.1

UPC Runtime Berkeley UPC 2.22.3

Table 3. SGI UV 2000 configuration

Processor Intel(R) Xeon(R) CPU E5-4620 v2 2.60GHz X 32

Memory 4TB DDR3 1600MHz

Interconnect NUMAlink 6

OS SUSE Linux Enterprise Server 11

Compiler GCC 5.2

 We conducted our experiment of pure OpenMP

version on a single fat node with 16 threads and the SGI

UV 2000 machine with 16, 64 and 256 threads. For the

UPC version, experiments were done using 4, 8 and 16

nodes, each with 1 UPC process that had 16 OpenMP

threads.

6.1 Implicit vs. Explicit Data Distribution

 Kernel time for implicit and explicit data

distribution version with 4 UPC processes are presented

in Table. 4. As we can see, the running time for implicit

version is two orders of magnitude longer than that of the

explicit version. This is because in implicit version,

galaxy data are distributed to all nodes in a round-robin

fashion according to their global galaxy ID without

concerning about their spatial location. Therefore, during

the group search step little data locality exists, and there

are a lot of remote memory accesses on each process. In

fact, with 4 processes, only about 25% galaxy are stored

in the local memory for each process. Therefore, the

performance of implicit data distribution is not

satisfactory although it is easier to implement. Such data

placement strategy is not suitable for HGGF algorithm.

Table 4. Kernel time for implicit data distribution vs. explicit data

distribution version

Nsample 8 16 32 64

Implicit 23966.10 47901.93 95370.72 196321.20

Explicit 132.59 251.34 490.093 996.98

6.2 Bulk Memory vs. Non-bulk Memory Transfer

 As previously mentioned, coordinates mapping and

galaxy group linking require frequent fine-grained

remote memory access. Therefore, we use the bulk

memory transfer technique to reduce the cost.

 Table. 5 and Table. 6 demonstrate the time spent in

these two procedures with different problem size. The

experiments are carried out using 4 UPC processes. From

the result we can see that the non-bulk version with direct

remote memory access is much slower. With the help of

bulk memory transfer optimization, the time spent in

coordinates mapping is two orders of magnitude shorter

than that of the non-bulk transfer version. Time spent in

galaxy linking procedure also experiences a speedup of

around 4-5 compared with the non-bulk transfer version.

The reason why the speedup for the latter is not as

dramatic as that of the former is that in the galaxy linking

function remote memory accesses still exist because

information needed by the master process to construct

new links locally need to be fetched from other processes.

Table 5. Time for non-bulk and bulk memory transfer version of

coordinates mapping

Nsample 8 16 32 64 128 256 512

Non-bulk 26.83 45.55 128.45 231.77 410.04 1278.82 2842.63

Bulk 0.26 0.50 1.02 2.10 4.19 7.78 16.34

Table 6. Time for non-bulk and bulk memory transfer version of

galaxy linking

Nsample 8 16 32 64 128 256 512

Non-bulk 100.40 207.53 511.96 947.99 1652.66 5274.92 11063.74

Bulk 18.87 44.85 101.36 196.84 422.23 963.90 1455.75

As we can see, although UPC provides a handy

global memory view for programs, to achieve optimal

performance, hand-tuning of the code is necessary.

6.3 The Effectiveness of Adjacent Galaxy List Design

Table. 7 shows the time spent in kernel for 4

processes with and without adjacent galaxy list for

Nsample ranging from 8 to 64. Without adjacent galaxy

list, galaxies within the search radius of border group

centers must be fetched from the shared memory space

on other processes, therefore the performance is much

slower, which demonstrates the effectiveness of our

design.

Table 7. Kernel time for UPC version with and without adjacent

galaxy list

Nsample 8 16 32 64

Implicit 12861.23 24254.31 47686.04 96131.80

Explicit 132.59 251.34 490.093 996.98

6.4 Memory Requirement and Running Time

The major goal of our design and implementation is

to reduce the memory requirement on a single node. A

comparison of memory requirement on a single node for

different node count is presented in Fig. 13. With 4 UPC

processes running on 4 nodes, memory requirement on a

single node is reduced by 67.5%, and for 8 nodes and 16

nodes, the reduction is further increased to 76.2% and

85.3% respectively. For Nsample = 1024, since it cannot

fit into the fat node of our cluster, the value for OpenMP

version is estimated based on the fact that memory

consumption increases almost linearly as problem size

grows.

One thing to notice, the memory usage of UPC

version on a single node is not the total memory usage of

OpenMP version divided by the number of nodes, this is

because that our design incurs other memory

consumption that does not exist in OpenMP version. For

example, the adjacent galaxy list on each UPC process

stores a copy of galaxies on the border of other processes,

which is only necessary in UPC version since in OpenMP

version all galaxy data are stored in the memory space of

a single node, which can be directly read by all threads,

therefore no duplication of galaxies is needed.

Fig. 13: Memory requirement for different number of nodes

Fig.14: Total time on cluster

Fig.15: Kernel time on cluster

Fig. 16: Total time on SGI UV 2000

Fig. 17: Kernel time on SGI UV 2000

Fig. 14 and Fig. 15 show the overall running time

and kernel time for OpenMP version and UPC version

(with adjacent galaxy list) with 4 processes, 8 processes

and 16 processes running on our cluster with various

problem sizes.

Since the memory on a compute node is not

sufficient for problem of Nsample = 1024, the time of

OpenMP version of that size is estimated according to the

fact that it increases linearly as Nsample grows.

Compared with single-node OpenMP version, the

average speedups of kernel for 4-process, 8-process and

16-process configurations are 2.25, 2.78 and 5.07

respectively. As for the total running time, 1.69, 1.90 and

2.63 times speedup are achieved respectively.

 The execution time is closely related to how the

domain is decomposed. We try to divide the space in a

way that each process holds a relatively even number of

galaxies so that the memory requirement on each node

can be more even. However, due to the disparity of galaxy

distribution density in the data, double the number of

nodes may not reduce the time by half since the high

density area dominates the execution time.

We also carried out the OpenMP version experiment

on the SGI UV 2000 machine. Fig. 16 and Fig. 17 show

a comparison of performance between a single cluster

node and the SGI machine. As we can see, when both

using 16 OpenMP threads, the performance on the SGI

machine is better than that of a compute node on our

cluster since its CPU is more advanced. However, when

using 64 threads, the performance becomes poorer, this is

due to the reason we discussed in section 4.2. After

increasing the number of threads to 256, the performance

continues to degenerate, this is caused both by OpenMP

fork/join overhead due to larger number of threads and

remote memory access. However, since more threads are

employed, the workload for each thread is reduced, and

this has a positive impact on the performance. Due to the

mixed effect of these factors, the overall performance is

only slightly worse than that of 64 threads.

 With equal number of cores, our two-level UPC +

OpenMP implementation of the program has better

performance over pure OpenMP version due to better

data locality and lower OpenMP overhead.

7. Conclusion and Future Work

We presented our parallel design and UPC

implementation of the HGGF algorithm. Domain

decomposition of galaxy data according to their spatial

coordinates is done to distribute galaxy data to multiple

nodes to solve the single node memory limit problem.

The major hurdle for parallelizing HGGF with multiple

nodes is expensive remote memory access due to the

semi-random galaxy access behavior of the program. To

avoid such a problem, we proposed the adjacent galaxy

list design. Our experiment results show that our two-

level UPC + OpenMP design is effective in accelerating

the algorithm and reducing the single node memory

requirement.

Implicit and explicit data distribution and bulk

memory transfer optimization in UPC program are

studied, and the result shows that although implicit data

distribution is easier in coding, it may not present the best

performance for programs like HGGF. Meanwhile, in

order to achieve better performance, optimization

techniques such as bulk memory transfer are necessary

due to limitations such as compiler optimization.

 From our study, we can also see that for programs

which are bound by frequent semi-random memory

access like HGGF, users may need to pay special

attention when using computers like SGI machines.

Memory latency may pose a threat to the performance on

such machines for these programs.

 Our next step will be devise a more sophisticated

domain decomposition strategy which can improve the

load-balancing between nodes to further accelerate the

performance.

Acknowledgment

This research is supported by China National High-

Tech R&D Plan (863 plan) 2014AA01A302. James also

greatly acknowledges support from Japan JSPS

RONPAKU (Thesis PhD) Program. We would also like

to thank Prof. Xiaohu Yang for providing SGI UV 2000

machine.

Reference

[1] The 2dF Galaxy Redshift Survey: http://www.2dfgrs.net/

[2] SDSS: http://www.sdss.org

[3] Heitmann K, Frontiere N, Sewell C, et al. The Q Continuum Simulation:

Harnessing the Power of GPU Accelerated Supercomputers[J]. The

Astrophysical Journal Supplement Series, 2015, 219(2): 34.

[4] The Millennium Simulation Project:

http://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium/

[5] Eke V R, Baugh C M, Cole S, et al. Galaxy groups in the 2dFGRS: the

group-finding algorithm and the 2PIGG catalogue[J]. Monthly Notices

of the Royal Astronomical Society, 2004, 348(3): 866-878.

[6] Kwon Y C, Nunley D, Gardner J P, et al. Scalable clustering algorithm

for N-body simulations in a shared-nothing cluster[C]//International

Conference on Scientific and Statistical Database Management. Springer

Berlin Heidelberg, 2010: 132-150.

[7] Yang X, Mo H J, Van Den Bosch F C, et al. A halo-based galaxy group

finder: calibration and application to the 2dFGRS[J]. Monthly Notices

of the Royal Astronomical Society, 2005, 356(4): 1293-1307.

[8] Yang X, Mo H J, Van den Bosch F C, et al. Galaxy groups in the SDSS

DR4. I. The catalog and basic properties[J]. The Astrophysical Journal,

2007, 671(1): 153.

[9] Davis M, Efstathiou G, Frenk C S, et al. The evolution of large-

scale structure in a universe dominated by cold dark matter[J]. The

Astrophysical Journal, 1985, 292: 371-394.

[10] UPC Language Specifications, Version 1.3

[11] Katz N, Hernquist L, Weinberg D H. Galaxies and gas in a cold dark

matter universe[J]. The Astrophysical Journal, 1992, 399: L109-L112.

[12] Eisenstein D J, Hut P. Hop: A new group-finding algorithm for n-body

simulations[J]. The Astrophysical Journal, 1998, 498(1): 137.

[13] Liu Y, Liao W, Choudhary A. Design and evaluation of a parallel

HOP clustering algorithm for cosmological simulation[C]//Parallel and

Distributed Processing Symposium, 2003. Proceedings. International.

IEEE, 2003: 8 pp.

[14] Verleye B, Henri P, Wuyts R, et al. Implementation of a 2D electrostatic

Particle-in-Cell algorithm in unified parallel C with dynamic load-

balancing[J]. Computers Fluids, 2013, 80: 10-16.

[15] Teijeiro C, Sutmann G, Taboada G L, et al. Parallel Brownian dynamics

simulations with the message-passing and PGAS programming mod-

els[J]. Computer Physics Communications, 2013, 184(4): 1191-1202.

[16] Valero-Lara P, Jansson J. LBM-HPC-An Open-Source Tool for Fluid

Simulations. Case Study: Unified Parallel C (UPC-PGAS)[C]//2015

IEEE International Conference on Cluster Computing. IEEE, 2015: 318-

321.

[17] Zheng Y. Optimizing UPC programs for multi-core systems[J]. Scientific

Programming, 2010, 18(3-4): 183-191.

[18] Cache Miss Rates in Intel® VTune™ Amplifier XE :

https://software.intel.com/en-us/articles/cache-miss-rates-in-intel-vtune-

amplifier-xe

[19] Technical Advances in the SGI® UV™ Architecture:

https://www.sgi.com/pdfs/4192.pdf

[20] Hao H, Si Y M, et al. Optimizing Irregular Memory Access in Astrophysical

Clustering Studies[J]. Journal of Frontiers of Computer Science and Technology,

2016.

https://software.intel.com/en-us/articles/cache-miss-rates-in-intel-vtune-amplifier-xe
https://software.intel.com/en-us/articles/cache-miss-rates-in-intel-vtune-amplifier-xe

